STRUCTURE STUDIES OF NEW ANTISWEET CONSTITUENTS FROM GYMNEMA SYLVESTRE 1

Kazuko Yoshikawa^{*a}, Kayoko Amimoto^a, Shigenobu Arihara^a, and Kouji Matsuura^b ^aFaculty of Pharmaceutical Sciences, Tokushima-Bunri University, Tokushima-shi, Tokushima, 770, Japan

^bTeikoku Seiyaku Co., Ouchi-cho, Ookawa-gun, Kagawa, 769-26, Japan

Summary : Gymnemic acid I , II , III and IV have been isolated from hot water extract of leaves of <u>Gymnema sylvestre</u> R. Br. as antisweet principles. The whole structures were determined by chemical and spectroscopic means.

Gur-ma (an Indian word meaning sugar destroying), being the leaves of <u>Gymnema sylvestre</u> R. Br. (Asclepiadaceae), one of the traditional medicines used in India as stomachic, diuretic, cough remedy, etc. are well known to have a specific feature of temporarily² destroying the taste of sweetness. Subsequently, the antiviral effect³ and strong reducing effect on blood sugar concentration^{2,4} were found in gymnemic acid (mixture)⁵ which was isolated as an antisweet principle. However, its chemical structure has not yet become clear^{3,6} Therefore, we started to isolate gymnemic acid and elucidate the structure.

Hot water extract of the dry leaves (1.5 kg) of <u>G. sylvestre</u> R. Br. followed by treatment with Amberlite XAD-2 column chromatography gave a saponin fraction. Repeated separation of saponin fraction by reversed-phase and ordinary-phase SiO_2 column chromatography furnished four new antisweet principles, gymnemic acid I (<u>1</u>, 100 mg), II (<u>2</u>, 240 mg), III (<u>3</u>, 40 mg), IV (<u>4</u>, 70 mg).

Mild acid hydrolysis of <u>1-4</u> furnished glucuronic acid (glcUA) and gymnemagenin (<u>6</u>)⁷, mp 313-314°C, $[\alpha]_D$ + 53.5°(c 1.8, MeON), $C_{30}H_{50}O_6$ [FABMS m/z 530(N+Na+H)⁺]. Alkaline hydrolysis of <u>1-4</u> furnished prosapogenin (<u>5</u>), mp 230-231°C, $[\alpha]_D$ + 8.4° (c 1.8, MeOH), $C_{36}H_{58}O_{12}$ [FABMS m/z 728(N+2Na)⁺], which, on acid hydrolysis, provided <u>6</u> and glcUA.

By comparing the ¹³C-NMR spectrum of 5 with that of 6 a glycosylation shift⁸ of + 8.2 ppm was observed at C₃, disclosing the site of glycosylation in 5. Hence 5 is 3-0- β -D-

1103

glucuronopyranosyl gymnemagenin⁹.

Gymnemic acid II (2), mp 212-213°C, $[\alpha]_D$ + 36.3° (c 1.5, MeOH), possessed the molecular formula C₄₃H₆₈O₁₄. ¹H-NMR spectrum of <u>2</u> suggested that <u>2</u> was composed of one mol each of <u>6</u>, acetic acid, 2-methylbutyric acid¹⁰ and glcUA. Acetic acid and 2-methylbutyric acid obtained by mild alkaline hydrolysis of <u>2</u> were identified as their p-nitrobenzyl esters. [HPLC, YMAC-Pack C₈, 6 ϕ , 15 cm, 60% MeOH). The absolute configuration of 2-methylbutyric acid was determined as <u>5</u> by optical rotation ($[\alpha]_D$ + 16.3°(c 0.3, 50% MeOH), Lit. $[\alpha]_D$ + 19.2°(c 1.0, EtOH).¹¹

By comparison of 2 with that of 5 in both ¹H- and ¹³C-NMR spectra, two acylation shifts were observed at the C₂₁ (position)[+ 0.79 ppm(21-H), + 1.0 ppm(C-21)] and the C₂₈(position) [+ 0.28 and 0.52 ppm(28-H₂), +3.7 ppm(C-28)]¹². Therefore, in 2, the 0-21 and 0-28 of 5 should be acylated. Long rang selective proton decoupling (LSPD)¹³ experiment revealed that 21-H (δ 5.68) had coupled to C-1''(δ 176.6) and 28-H₂(δ 4.61 and 5.02) had coupled to C-1''' (δ 170.9), establishing the existence of 2-methylbutyloyl at the C₂₁(position) and acetyl at the C₂₈(position). The structure of 2 is thus 3-0- β -D-glucuronopyranosyl-21-[§(+)-2-methylbutyloyl]-28-0-acetyl gymnemagenin.

¹H-NMR spectrum of <u>1</u>, $C_{43}H_{66}O_{14}$, mp 211-212°, $[\alpha]_D + 36.7^{\circ}$ (c 2.4, MeOH), suggested that <u>1</u> was composed of one mol each <u>6</u>, acetic acid, tiglic acid and glcUA. Acetic acid and tiglic acid were converted to p-nitrobenzyl esters as in <u>2</u> and identified using HPLC. Comparison of the ¹H- and ¹³C-NMR spectrum of <u>1</u> with those of <u>5</u> disclosed C_{21} [+ 0.89 ppm (21-H), + 1.7 ppm(C-21)] and the C_{28} [+ 0.34 and + 0.56 ppm(28-H₂), + 4.0 ppm(C-28)] as acylation sites in the former. The LSPD experiment showed the presence of tigloyl at the C_{21} (position) and acetyl at the C_{28} (position). The structure of <u>1</u> is thus 3-O- β -D-glucurono-

Table I. ¹H-NMR data for 1-6 (C_5D_5N/D_2O , Me₄Si=0)

	H-16	H-21	H-22	H ₂ -23	H ₂ -28	Acyl moieties A	nomeric H
1	5.14dd J=11.5,5.0	5.78d J=10.5	4.59d J=10.5	3.71,4.37d J=10.5	4.65,5.08d J=11.0	1.64d,1.91s,7.07q J=6.5 J=6.5	5.29d J=7.5
2	5.10dd J=10.0,5.0	5.68d J=10.5	4.54d J=10.5	3.70,4.36d J=11.0	4.61,5.02d J=11.0	0.98t,1.26d,1.54q J=7.0 J=7.0 J=7.0 2.59sex,1.97s J=7.0	5.27d J=8.0
3	5.09dd J=10.5,5.0	5.70d J=10.5	4.94d J=10.5	3.71,4.35d J=11.0	4.06,4.67d J=10.5	0.99t,1.27d,1.54q J=7.0 J=7.0 J=7.0 2.58q J=7.0	5.27d J=8.0
4	5.12dd J=11.5,5.0	5.79d J=10.5	5.03d J=10.5	3.71,4.35d J=10.0	4.08,4.70d J=10.0	1.64d,1.90s,7.08q J=7.5 J=7.5	5.27d J=8.0
5	5.07dd J=11.0,5.0	4.89d J=10.5	4.07d J=10.5	3.71,4.37d J=11.0	4.09,4.74d J=10.5		5.28d J=8.0
6	5.08dd J=11.5,5.0	4.90d J=10.5	4.08d J=10.5	3.72,4.18d J=10.5	4.12,4.75d J=10.5		

Table II. 13 C-NMR data for 1-6 (C₅D₅N, Me₄Si=0)

		1	2	3	4	, 5	6
Aglycone	C-2	26.3	26.1	26.1	26.1	26.1	27.7
moiety	C-3	82.3	81.9	81.9	81.9	82.0	73.8
	C-4	43.7	43.5	43.5	43.5	43.6	42.9
	C-15	36.4	36.4	36.4	36.3	35.8	36.0
	C-16	67.7	67.5	68.0	68.1	68.4	67.8
	C-17	45.9	45.6	47.1	47.2	46.6	46.6
	C-20	36.9	36.4	36.5	36.8	36.7	36.8
	C-21	79.1	78.4	79.1	79.7	77.4	77.3
	C-22	71.7	71.4	71.2	71.3	73.5	73.3
	C-23	64.4	64.3	64.4	64.4	64.4	68.3
	C-24	13.9	13.6	13.6	13.7	13.7	13.1
	C-28	62.6	62.3	58.1	58.2	58.6	58.6
3-0- <i>B</i> -D-	C-1'	106.3	106.3	106.3	106.3	106.2	
Glucurono-	C-2'	75.5	75.5	75.5	75.5	75.5	
pyranosyl	C-3'	78.1	78.1	78.1	78.1	78.2	E.11 411
moiety	C-4'	73.5	73.4	73.5	73.5	73.8	
-	C-5'	77.8	78.0	77.9	77.9	77.9	
	C-6'	173.1	172.9	172.9	172.9	173.0	0 2" H
Tigloyl or	c-1''	168.5	176.6	176.6	168.3		tigloyl
2-methyl-	C-2''	129.7	42.1	42.1	129.7		5,11
butyloyl	C-3''	137.3	27.3	27.3	136.6		." ČН
moiety	C-4''	12.7	12.1	12.1	12.5		-C-CHCH-CH-
	C-5''	14.6	17.2	17.2	14.3		$\begin{array}{c} \begin{array}{c} 0 \\ 0 \end{array} \\ \begin{array}{c} 2^{\prime\prime} 3^{\prime\prime} 2^{\prime\prime} 4^{\prime\prime} \end{array} \\ \begin{array}{c} 4^{\prime\prime} \end{array}$
Acety1	C-1'''	171.4	170.9				2-methylbutylogi
moiety	C-2'''	21.1	20.7				2 meenyibutyloyi

pyranosyl-21-0-tigloyl-28-0-acetyl gymnemagenin.

Using a similar strategy, the structures of $\underline{3}$, mp 218-219°C, $[\alpha]_{D}$ + 7.6° (c 2.9, MeOH) and of 4, mp 220-221°C, $[\alpha]_{D}$ + 8.8° (c 5.4, MeOH) have been assigned. A 0.5 mM each of gymnemic acid I, II and 1 mM each of gymnemic acid III, IV solution led to a complete suppression of sweetness induced by 0.4 mM sucrose. In general, we have found the antisweet activity of these saponins decreases with the decreasing number of acyl groups. 5 and 6 were not active at all.

- Reference and Note -

- K. Yoshikawa, K. Amimoto, S. Arihara, K. Matsuuram, International Congress on Natural Products Research, Park City, Utah, July, 1988, p: 63.
- 2) K. G. Gharpurey, Ind. Med. Gaz., <u>61</u>, 155 (1926); K. S. Mhaskar, J. F. Caius, Indian Med. Res. Mem., <u>16</u>, 1 (1930): R. M. Chopra, 'Indigenous Drugs of India', 2nd ed ., Art Press, Calcutta, India, 1958, p 336
- 3) J. E. Sinsheimer, G. S. Rao, H. M. McIlhenny, R. V. Smith, H. F. Maassab, K. W. Cochran, Experientia, <u>24</u>, 302 (1968).
- 4) K. R. Shanmugasundaram et al, Arogya-J. Health Sci., VII, 38 (1981).
- 5) D. Hooper, Pharm. J., <u>17</u>, 867 (1886/1887); idem, J. Soc. Chem. Ind., <u>6</u>, 380 (1887); idem, Chem. News., <u>59</u>, 159 (1889).
- 6) R. M. Warren, C. Pfaffmann, J. Appl. Physiol., <u>14</u>, 40 (1959); K. S. Yackzan, Alabama J. Med. Sci., <u>3</u>, 1 (1966); W. Stoecklin, E. Weiss, T. Reichstein, Helv. Chim. Acta, <u>50</u>, 474 (1967); G. S. Rao, J. E. Sinsheimer, J. Charm. Sci., <u>60</u>, 190 (1971); Y. Kurihara, Life Sci., <u>8</u>, 537 (1969).
- 7) J. E. Sinsheimer, G. S. Rao, H. M. McIlhenny, J. Pharm. Sci., <u>59</u>, 629 (1970).
- 8) R. Kasai, M. Okihara, J. Asakawa, O. Tanaka, Tetrahedron, 35, 1427 (1979).
- 9) Assingnment for protons in the ¹H-NNR spectrum of 1-6 were made by ¹H/¹H spin decoupling and also especially by 2D cosy spectra(¹H/H, ¹³C/¹H). The anomeric configuration of glcUA was confirmed as β based on the coupling constant of its anomeric proton (δ 5.28d, J=8.0 Hz) as well as the ¹³C-NMR spectrum.
- 10) T. Konoshima, T. Sawada, Chem. Pharm. Bull., 32, 2617 (1984).
- M. Yamashita, M. Kobayashi, M. Sugiura, K. Tsunekawa, T. Oshikawa, S. Inokawa,
 H. Yamamoto, Bull. Chem. Soc. Jpn., <u>59</u>, 175 (1986).
- 12) H. Ishii, K. Tori, T. Touzyo, Y. Yoshimura, Chem. Pharm. Bull., <u>26</u>, 678 (1978).
- 13) H. Seto, T. Sasaki, H. Yoneyama, J. Uzawa, Tetrahedron Lett., <u>1978</u>, 923.
- (Received in Japan 16 December 1988)

1106